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ABSTRACT

A quasichemical partition function is applied to represent the thermodynamic properties of aqueous
solutions of nonelectrolytes, including linear polymers and crosslinked polymers (gels). The partition
function extends conventional lattice theory; to take into account strong specific interactions (hydro-
gen bonds) as encountered in aqueous solutions, each molecule (polymer segment) may possess three
energetically different .types of contact sites. We distinguish between sites that interact through
dispersion forces and sites which can participate in a hydrogen bond; hydrogcn-bonding sites are di-
vided into electron-pair donating sites and electron-pair accepting sites. The Helmholtz energy of the
mixture is obtained using an oriented quasichemical approximation. The final equation contains three
independent adjustable binary parameters; these are the exchange energies for different types of con-
tact pairs. To represent quantitatively upper or lower critical solution phenomena, we include the
semi-theoretical fluctuation correction recently proposed by de Pablo. Comparison with experimental
data indicates that the proposed molecular-thermodynamic model may be useful for representing

phase equilibria for a variety of aqueous systems including swelling equilibria for hydrophilic gels.
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Introduction

Water-soluble polymers are specialty chemicals used in a variety of consumer-orientea materi-
als such as cosmetics, food additives, pharmaceuticals and personal-care products. Little is known
about the the_rmodynamic properties of aqueous polymer solutions. This work reports some initial
studies toward increasing our understanding of aqueous polymer phase behavior, and toward improv-

ing our ability to correlate that phase behavior.

Several molecular-thermodynamic models have been used to describe binary vapor-liquid
equilibria and semi-dilute ternary liquid-liquid equilibria in aqueous polymer solutions (e.g. Edmond
and Ogsten, 1968, Kang and Sandler, 1988, King et al., 1988). However, presently available models
are not applicable to liquid-liquid equilibria for concentrated aqueous polymer solutions, especially
for those solutions that exhibit a lower consolute temperature. We present here an oriented quasi-
chemical model which is promising for describing such systems. We also apply this model to phase
equilibria in aqueous mixtures containing hydrophilic gels. Gels are useful for drug delivery devices
(e.g. Siegel, 1989; Hoffman, 1987), for separation opérations in biotechnology (Freitas and Cussler,

1987), and for processing of agricultural products (Trank et al, 1988).

The thermodynamic properties of aqueous polymer solutions cannot be correlated by simple
lattice models such as Flory-Huggins theory. Phase equilibria in these systems are influenced by
strong, orientation-dependent interaction forces, such as hydrogen bonds. Conventional polymer-
solution models (e.g. Flory, 1970, Patterson, 1969) do not take into account deviations from random

mixing caused by these orientation-dependent interactions.

In recent years, several authors have proposed for polymer solutions molecular-thermodynamic
models that attempt to account for nonrandom mixing. These models are often based on the local-
composition concept where expressions for local composition are obtained eithér from essentially
empirical relations (e.g. Canovas et al., 1982, Brandani, 1979, Rubio and Renuncio, 1980, Kang and
Sandler, 1988) or else are derived from Guggenheim’s traditional quasichemical approximation (e.g.
Panayiotou, .1984, Panayiotou and Vera, 1980, Kumar, Suter and Reid, 1987). However, these

models are not suitable for describing aqueous polymer systems; in particular, they are unable to
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account for observed order-disorder transitions leading to lower critical solution temperatures.

To account for orientational effects, Kehiaian et al (1978), Abusleme and Vera (1985a, 1985b),
and Smirnova and Victorov (1987) have proposed group-solution models. These models, however,
consider the different groups to be independent of the molecule to which the groups belong. Group-
contribution models, therefore, are not suitable for describing order-disorder transitions in agqueous

polymer solutions.

While an uppér critical solution temperature (UCST) is readily understood in terms of inter-
molecular forces, interpretation of a lower critical solution temperature (LCST) is more difficult
(Rowlinson and ‘Swinton, :1982). Generally, a LCST ‘is.observed ‘when:either of .the following -condi-
‘tions prevails:

1) Large differences in thermal expansion of solvent and solute. This sit_uau'on 1s often .encountered in
- polymer/volatile-solvent systems [e.g. poly(styrene)/acetoﬁe (Siow.et.al., 1972, Zeman.and Patterson,
1972)] when the system temperature approaches the -critical temperature of the solvent. As tempera-
ture rises, the solvent expands more rapidly than the solute; solubility decreases until two separate
phases are formed. This behavior is well described by free-volume theories [e.g. Flory, 1970, Patter-

son, 1969, Lacombe and Sanchez, 1976, Sanchez and Lacombe, 1978)].

2) Order-disorder transitions, as encountered in systems of molecules capable of forming hydrogen
bonds, e.g. water/nicotine (Cambell et al., 1958) and water/poly(ethyleneglycol) (Malcolm and'Row-
linson, 1957). More than fifty years ago, Hirschfelder et al. (1937) suggested a qualitative physical
picture to explain the occurence of LCSTs in hydrogen-bonding systems: at temperatures below the
LCST, mutual solubility is due to highly orientation-dependent interactions (hydrogen bbonds)
between unlike species. As the iemperature rises, molecular rotation increases, causing hydrogen
bonds to break. If dispersion-force interactions between unlike species are weaker than those

between like species, the system splits into two phases.

In this paper we are concerned with aqueous solutions at ordinary temperatures; therefore the

free-volume theories are not useful here.
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Models that attempt to incorporate order-disorder transitions were proposed in the early 1950's
by Barker (Barker, 1952, Barker and Fock, 1953) and Tompa (1953). Barker and Fock considered a
lattice with coordination number z where each site is occupied by one molecule.of either species 1
or 2. One or more of the z contact points of each molecule were taken to be energetically different
from the others. Barker and Foék developed this model with the quasichemical approximation and
were able to show that, in principle, this model was capable of predicting LCSTs and UCSTs for
suitable choices of interaction parameters. However, Barker and Fock were not able to reproduce
liquid-liquid equilibria quantitatively. Further, their model is restricted to solutions of equal-sized

molecules.and .therefore .it is not-directly applicable t0-aqueous polymer solutions.

Sjoeberg and Karlstroem (1988):have presented a model for ternary aqueous systems. As tem-
perature rises,-the authors assume a change-of polymer conformation from:a hydrophilic-to a hydro-

‘phobic state.

‘To describe "binary systems .of .nearly -equal-sized ‘molecules with -oriented interactions,
decorated lattice models have been proposed that are "exactly soluble” in the sense that they can be
mapped onto a. three-dimensional Ising model for which known solutions exist (e.g. Andersen and

Wheeler, *1978, Wheeler, 1975). The mathematical complexity of these models makes extension to

polymer solutions and multicomponent systems difficult.

We describe here a theory which, in spirit, is similar to that of Barker and Fock; our goal is to
interpret and quantitatively correlate phase equilibria in aqueous polymer solutions. Qur partition
function is formally similar to that of Abusleme and Vera (1985a), as discussed near the end of the

next section.

Lattice Theory for a Mixture of Hydrogen-Bonded Liquids

Figure 1 shows a two-dimensional representation of our lattice model. The coordination
number of the lattice is z (usually taken to be 10). Each molecule possesses zq contact sites through
which it can interact with nearest neighbors. For linear or branched-chain molecules, zq is related to

1, the number of segments per molecule, by
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2g=r(z-2)+2 )

To account for hydrogen bonding, we stipulate that the contact sites (or surface regions) of a
,molecult; (polymer segment).can exhibit different potential -energies. Each molecule (segment) .of
species i can possess three types of contact sites: hydrogen-bond donating sites, hydrogen-bond
accepting sites, and sites which interact through dispersion forces. -(Here we -define -electron-pair

acceptors as hydrogen-bond donating sites, and electron-pair donors as hydrogen-bond accepting
sites). We use zf and 2P, respectively, to denote the number of hydrogen-bond-donating and
hydrogen-bond-accepting sites per segment of molecule i. The remaining contacts, z° (=

z — z% - zP),-interact through dispersion forces.

For a given molecule, z* and zf are determined from molecular structure. Water, for example,
- can participate .in two hydrogen:bonds as a donor (z* = 2), and in two hydrogen bonds:as an.acceptor
(zf = 2). Some organic compounds can participate in hydrogen bonds only as donors (zf = 0), or

only as acceptors (z* = 0); examples include chloroform and (neglecting end-groups) polyethylene
-glycol. |

For a binary system in which each component contains «, 8, and D sites, there are twenty-one
different types of contact pairs, N,. Here, k and [ are contact-site indices, with a different index for
a, B, and D sites on each molecule i. In the simplest case, where the interaction energies uy
between all contact pairs are identical, all molecules (resp. contact sites) are randomly distributed
over the lattice. The numbers of different k! pairs are then given by the overall probability that two
contact sites of a given type are nearest neighbors. These humbers are readily calculated from the
overall composition and the number of different contact sites per molecule (segment). Guggenheim

calls this simple case the zeroth approximation (Guggenheim, 1952).
For those cases where molecules have homogeneous surface potentials (i.e., we do not distin-
guish between different types of contacts) but where Wij # w; # u;;, we can also calculate the number

of ij contact pairs using Guggenheim’s traditional quasichemical approximation. We then obtain
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modest deviations from random mixing. Guggenheim calls this case the first approximation.
However, for systems in which strong specific interactions are significantly different from weak
interactions, we expect large deviations from random mixing. To take these large deviations into

account, we write the partition function Q- for a hydrogen-bonding fiuid in the form
Q = Qcomb.random Qcomb.nonrandom QE Qvib,rot @

where

QOcomb random = random contribution to combinatorial factor,
-depending only on-number of molecules and molecular size

Qcomb nonrandom = NONrandom contribution to combinatorial factor, depending primarily .on the
‘interaction energies between different types of pairs relative to thermal

-energy kT, where 'k is Boltzmann’s constant

Or
Qvib ot

-energetic contribution to the partition function

To obtain an expression for the Gibbs energy of mixing from the partition function, we assume that
at the pressures and temperatures of interest here, the change in molar volume upon mixing is negli-

gible:
[A Griinglr,p = [A Amizinglr v = = KT In Qpyiging 3

where A is the Helmholtz energy.

The chemical potential per molecule of component i is calculated from the partition function accord-

ing to

BG-.,,,—G,- al ixin,
Ap; = gy — pp = XCmiwe = GO 010 Orising

AN, K —5N @

where N; is the number of molecules of species i. The differentiation in Equation (4) is at constant

temperature, constant pressure and constant N;.

contributions to the partition function from molecular vibrations and rotations.
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Superscript ° refers to the standard state, here chosen to be that of the pure component at system

temperature and bressure. Omixing 1S given by
Qmixing = Omizture | n qurci &)
]

Following Guggenheim (1952), we assume that the vibrational and rotational contributions to the par-
tition function do not change significantly upon mixing; therefore the Q. ., terms cancel out in
" Equation (5).

For the random contribution to the combinatorial factor we use an expression given by Gug-
genheim (1944a). In the derivation of .this combinatorial factor, the relation between r and q is given
by Equation (1) which*holds only for linear or. branched-chain molecules. As discussed later, to cal-
culate swelling -equilibria in systems containing crosslinked polymers, we use for Q,ungom the Flory-
Huggins .combinatorial ‘term. Both random combinatorial terms are functions only of the numbers
and sizes of the molecules in the mixture.

To obtain an expression for the non-random combinatorial term, we use an oriented quasichem-
ical approximation which is an extension of the quasichemical approximation suggested by Gug-
genheim (1944b). This extension follows from distinguishing between sites denoted by «, S, and D

as outlined below.

The energy contribution to the partition function is given by
Or = exp — (Eian / kT) (6)
For the lattice energy E,,,, we assume pairwise additivity of interaction energies.

To calculate Qponrandom and Qp, it is necessary to evaluate the numbers of different contact
pairs as a function of composition, temperature and the interaction energies between contacts. As
suggested by Panayiotou and Vera (1980), we express the numbers of nonrandom contact pairs in

terms of nonrandom factors I such that in a system containing m components, for a given pair

Nia/ﬁ = (Niajﬁ)r I‘?jp (i=1m; j=1m) (7a)
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NEP = (NSP), TEP  (i=1m; j=1.m)

NlﬂjD = (NxﬁjD)r rlp]D (‘ = lv’n; j= l'm)

NFE=(N5®), ITP (i=1m; j=1,m)

N‘ﬂlﬁ = (thjﬁ)r I“blﬂ (i=1,m; J=1m)

N7 =(NEP), PP (i=1m; j=1,m)

(7o)

(7c)

(7d)

(7e)

(70

where subscript r denotes random mixing. The nonrandom factors I are evaluated from minimization

of the Helmholtz energy, with constraints from contact-site balances. We then -obtain quasichemical

equations of the form

ref)’

(72 7 )

2

(e

(e e

2
[rff)

[ref) e

res1
(5 (579

(ref’
[T82) [T f)

[T ijlz
(rP21 (2P

= exp -[2 mf‘f’/kT] (i=1m; j=1,m)

-
exp — 2 wfP s kT] (i=1m; j=1,m)

= exp- |2 0fP/ kT] (i=1m; j=1,m)

exp — [2 o/ kT- (i=1lm; j=1m;i=))

exp — [2 off | kT- (i=1,m; j=1m;i=#j)

exp - [2 PPy kT] G=1m; j=1m;i#j)

where the exchange energies w are given by

off = uff - voul® - hubff  (i=1m; j=1m)

(8a)

(8b)

(8¢c)

(8d)

(8e)

(89

(9a)



off = uff - veul® - vuPP  (i=1m; j=1m) (9b)
of P=ubP - veubP - uuPP  (i=1m;j=1,m) | (9¢)
o = uf® - Yoult® - Yaud?  (i=1m; j=1lm;i=j) (9d)
off=uff—vauPf - uubf  (i=1m; j=1Lm; iwj) (%)
PP = uPP - uuPP - vuPP  (i=1m;j=1m;.i=j) (99

The contact-site balance equations in a system of m components can be written as

- [z o7 i +f29/p ref+ :z‘ejp IreP +ef ref 6P W’D]
7 - <

ree = (10a)
"9‘,“
. 1= [Z ORI+ 36f TPP + 3 6P TPP +- 07 TP+ elp'rlpiDJ
rif = . ’ 4 (105)
6f
1- [29}* P+ Y0P TP + ToP PP 4 6o TPe 4 of rP,J’J
. ; ,
TPP = : : (100)
e
where: i=1m; j=1m; j#i
Here 67, 6F, and 6P are contact-site fractions, defined by
27 q; N; 2P g N; P qiN;
9;"5;?— . e‘ﬂs_q__ . ‘_DE‘_q__._ (11)
Nzgq N:zg N:zg

with Nzg =2 Zq;Ni

Details leading to Equation (8) and Equation (10) are given as supplementary material.

To describe a binary system, we require twenty one nonrandom factors I'. To obtain them, we
have fifteen quasichemical equations (four equations each of types 8a, 8b, and 8c, and one equation

each of types 8d, 8¢, and 8f) in addition to six contact-site balance equations (two equations each of



-10 -

types 10a, 10b, and 10c).

For solutions of linear or branched polymers, we obtain for the chemical potential per mole of

component i
Au;=—RT | r,(Y2z-1)In¢;, - Yzq;In 6, -1+ %— +Y%zq (1- %) + (12)
rge Tep oo
[ T35 Imix [TPP )i _ [T2:° ) mix
here ¢ is the volume fraction: ¢, Nir
where ¢ is the volume fraction: ¢; = .
z Njr;
J
. . Nig;
and 6 is the surface fraction: 6; =
N;g;

J
The first five terms of the right-hand side of Equation (12) give contributions from random mixing;

-the last three terms give the non-randomness contribution and the energetic contribution.

If we do not allow for hydrogen-bonding contacts, then z* and zf become equal to zero and the
nonrandom factors for the pure components I';; are eqﬁal to unity. In that event our model reduces
to the first approximation sﬁggcsled by Guggenheim (1952). If we equate interacﬁon energies
between all contact pairs (i.e., if we set all exchange energies to zero), then the nonrandom factors
are unity for the pure components and for the mixture, and the last three terms of Equation (12) are
equal to zero. In that case, our model reduces to Guggenheim's zeroth approximation (Guggenheim,

1952).

The similarity of our partition function to that of Abusleme and Vera (1985a) becomes
apparent if we regard our model as a group-contribution model that contains three groups (e, B, and
D). However, unlike Abusleme and Vera, we assume different interaction potentials for the same
group, depending on whct‘her it belongs to molecule A or molecule B. Thus, while our final equa-

tions are similar to those of Abusleme and Vera, our physical picture leading to these equations is

significantly different.
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Details of the derivation of the partition function and the expression for the chemical potential

are available as supplementary material.

Comparison with Experimental Data

To calculate phase equilibria, the chemical potential .of every component in.the-mixture must

be evaluated as a function of temperature, composition and interaction energies. Structural parameters

ri, gi, 2%, and zf are obtained from molecular size (number of structural units per molecule) and from

molecular structure (e.g., number of possible hydrogen bonds per structural unit). For water we use
r=1,¢=1,22=2, and zf = 2.

The exchange energies .are adjustable .binary parameters. For a ‘binary-system in which both
components contain «, .8, and D -contact sites, there ‘are fifteen- different exchange energies. To
make tractable the number of adjustable parameters, we group -exchange energies-into four categories,
and make a reasonable simplifying assumption for each of the first three. The four groups (and the
simplifying assumptions) are as follows:

(1) energies of hydrogen bonding between. like molecules: 0P =w$f
(2) energies of hydrogen bonding between unlike molecules: off = 0ff
(3) weak attractions between hydrogen bonding and non-hydrogen bonding contacts:
of” = off = 05 = off = off = of = g = of?
DD

(4) weak attractions between unlike molecules: o1

Exchange energies of types (1) and (2) are always negative, reflecting the favorable energetics of

-hydrogeri-bond formation. Exchange energies of type (4) are typically positive, indicating that van

der Waals interactions are less favorable between unlike molecules than between like molecules.
Finally, exchange energies of type (3) are negative due to the unfavorable energetics of a@—a and

B-pB contacts, relative to a—D and B-D contacts.
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Two exchange energies have been omitted from the above discussion: o%* and wff. Interac-

tion potentials for a—a and S~B contacts between unlike molecules are not likely to be significantly
different from those between like molecules. Thus, @®%* and wff .are set to zero in all cases.
A final simplification is to fix the value of the pure-component hydrogen-bonding exchange

energies (ofi’ and w$f) at a constant (negative) value for all systems. From experience with data

reduction, we find that good quantitative representation of experimental data is obtained when

off 1k = 0%f 1k = -2000 K
and when the remaining.parameters are adjusted. Thus,.in.a binary system, we have three adjustable

exchange-energy parameters: 0%’ (='w§#), o}P, and &P *. The parameter ® * refers to exchange
energies of type (3), where * = a or 8, and the exchange -energy is identical for 1-1, 2-2, 1-2, and

2-1 contacts.

The simplifications made here reduce to three the number of adjustable parameters in the model
without sacrificing the physical picture used in deriving the partition function. While these
simplifications may appear extreme, it is important 1o remember that energy parameters used to
correlate experimental data are relative, not absolute representations of underlying molecular interac-

tions (see recent computer simulation studies of Madden et al, 1989). Thus, while we have fixed the

values of w$? and w$f, the remaining parameters indicate the relative magnitudes (and signs) of

other interactions with respect to these fixed values.

When compared to computer calculations, Madden found that Guggenheim’s quasichemical
.theory agrees fairly well with simulation over a wide concentration range; the other lattice models
Madden considered agreed less favorably with simulation. Madden’s work thus lends support to our

choice of quasichemical theory as a framework for developing an oriented lattice model.

In the following sections, we apply the oriented quasichemical model to vapor-liquid equilibria
(VLE) and liquid-liquid equilibria (LLE) for several aqueous solutions containing molecules of

different sizes.
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Vapor-Liquid Equilibria (VLE)

Figure 2 shows vapor-liquid equilibria for aqueous solutions of poly(ethyleneglycol) (PEG) and
poly(propylenegliycol) (PPG) (Malcolm and Rowlinson, 1957). The activity of the solvent is plotted
as a function of volume fraction of the polymer for PEG solutions of different molecular weights.
The solvent-activity data for the low molecular-weight (300) PEG differ appreciably from those for
the higher molecular-weight fractions. This difference is probably due to the terminal -OH groups

which have considerable influence on the behavior of the low molecular-weight fractions. Because
we neglected end groups in determining z¢ and z£ for PEG, it was necessary to allow one binary

parameter, ¥, to differ for the low and high molecular-weight-fractions. Table 1 -gives parameters

used to fit VLE data.

Figure 2 shows that the model can represent the .data within experimental -error. However, such

fitting is not remarkable. Other, simpler Gibbs-energy models also -fit ‘these VLE data. It is much

more difficult to fit binary liquid-liquid equilibrium data.

Liquid-Liquid Equilibria (LLE)
Figures 3 and 4 show experimental and calculated LLE for aqueous systems containing

molecules ranging in molecular weight between 56 (propenal) and 290,000 poly(N-

isopropylacrylamide). Table 2 gives parameters used to correlate LLE.

The systems phenol/water vand propenal/water exhibit upper critical solution temperatures.
However, PEG/water, PPG/water and poly(N-isopropylacrylamide)/water exhibit lower critical solu-
tion temperatures. These LCSTs are caused by order-disorder transitions due to the breakage of
hydrogen bonds with increasing temperature. While conventional polymer-solution models can
predict the existence of UCSTs, they cannot predict the existence of LCS:Ts that are caused by
order-disorder transitions, unless we assign unreasonable temperature dependences to the energy
parémeters. The broken lines in Figures 3 and 4 show coexistence curves calculated from our model.
Without modification, the oriented quasichemical model is able to reproduce qualitatively upper as

well as lower critical solution temperatures with temperature-independent parameters. In all systems
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we observe that, remote from the critical point, agreement between experimental and calculated

results is good; however, as the critical point is approached, deviations become unacceptably large.
These deviations are caused by two effects:

a) For simplicity, we have here assumed that the exchange energies are temperature indepen-
dent. This .assumption neglects the effect of la‘iice .expansion .and, more important, it neglects

changes in rotational and vibrational partition functions due to mixing.

b) The.oriented quasichemical model is classical in the sense that it does not take into account
fluctuations of compositions around mean equilibrium values. Near the critical point of a system,
these fluctuations become important and, very close to the critical point, they determine the proper-

ties of the system (Sengers and Levelt Sengers, 1978).

De Pablo ‘and Prausnitz (1988) have developed a semi-theoretical correction ‘10 take these fluctuations

into account. Along the coexistence curve, the excess Gibbs energy can be expressed as
GE=GE, F (13)

where GE,, is the excess Gibbs energy calculated from a "conventional” model (such as ours) and
where F is a decay function that describes the effect of fluctuations as a function of distance from the
critical point. For a binary system, along the coexistence curve, F is only a function of temperature,

As suggested by de Pablo, F is given by

=T
F=1-Kexpa T (149)

c

where T is the critical temperature of the system. At the critical point, F =1 - K and therefore K
can be calculated from stability criteria. Constants a and b are not adjustable parameters; they are
determined from known exponents in scaling laws, as discussed by de Pablo and Prausnitz (1988).

Constant a is always negative and constant b is always positive.

The solid lines in Figures 3 and 4 show that, by introducing de Pablo’s correction into our
model, a much better representation of the data can be achieved. It is important to note that parame-

ters K, a and b are not adjustable binary parameters. They are determined only from theoretical
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criteria and from the experimental coordinates of the critical point.

Swelling Equilibria for Hydrophilic Gels

Gels are crosslinked-polymer networks that can absorb solvent but are insoluble in the solvent.
The equilibrium solvent content of the gel depends upon temperature, polymer-solvent interaction
and the elastic forces in the network that counteract swelling. It has been observed that with chang-
ing temperature, some gels can undergo phase transitions from a highly swollen (high solvent con-
tent) state to a collapsed (low solvent content) state (Tanaka, 1978; Hirokawa and Tanaka, 1984;
Hoffman, 1987; Freitas and Cussler, 1987). Gels of polymers that exhibit an UCST are collapsed at
low temperatures and swell as the temperature rises. Gels of polymers that exhibit a LCST show the
inverted behavior; they are swollen at low -temperatures and collapse as the temperature rises. We
have applied the oriented quasichemical theory to describe swelling equilibria in the system

water/poly(N-isopropylacrylamide).

Since the chemical potential given by Equation (12) is valid only for mixtures of linear or
branched molecules, we must use another expression for the random contribution to the combinatorial
factor. Further, in a crosslinked polymer, elastic ‘forces in the i)olymer network counteract swelling;
these forces contribute to the Gibbs energy. According to Flory (1953), the chemical potential of a

solvent in a gel phase coexisting with pure solvent is given by

Hy1 = uY = Apy = AUy mizing + DR clastic (15)

We use the Flory-Huggins combinatorial term for the random contribution to Al mizing. The nonran-
dom and energetic comributioﬁs to the partition function are the same as those described above for
systems containing non-crosslinked pdlymers. In a system containing a crosslinked-polymer net-
work, the number of polymer molecules (not the number of segments) approaches zero (Flory, 1953).

In this limit we obtain
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e (T8 8 e (T2P),re
Al mizing = ~=RT |In ¢y + 5 + Y227q, ln-[ﬂ-"f- + Vazfq,In {13, + sz?q,ln—lbli 16)

where ¢, is the volume fraction of the solvent and ¢, is the volume fraction of the gel in the gel
phase. An expression for the contribution of elastic forces to the chemical potential can be obtained

from the theory of rubber elasticity. We use an expression given by Flory (1953,

1

Vi 6213 oy
AUy elgeic = RT o oi(p-p) ||—| - -
u o7 2¢3

an

where
v, = molar volume of solvent

v, = molar volume of monomer unit

¢7 = volume fraction of the gel in the standard state (i.e. the volume fraction of the -gel in the state
at which it is prepared)

p = fraction of monomer units that are connected via crosslinks

p: = fraction of chains in the network that are terminated by a crosslink only on one end. These

chains do not contribute to elasticity.
Appendix T gives details concerning calculation of swelling equilibria.

Figure 5 shows experimental and calculated swelling equilibria for the ’system water/poly(N-
isopropylacrylamide) gel (Freitas, 1987) which shows an inverted phase transition; the ratio of
volume of gel in equilibrium with water (V) to that of dry gel (V,) is plotied against temperature.
The calculated curve is obtained using Equations (15)-(17) and using the procedure outlined in

Appendix I. The gel composition parameters required in Equation (17) are obtained from conditions

under which the gel is prepared (p = 0.018, ¢$ = 0.07); the value of p. 1is estimated to be 0.0001.
For the exchange energies, we use the parameters obtained from correlating LLE for the
uncrosslinked poly(N-isopropylacrylamide)/water system (Table 2). Thus, the calculated curve

shown in Figure 5 has not been fit to the experimental swelling data; this curve is a prediction based
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on the known gel composition at preparation, and on independently-obtained exchange-energy param-

eters.

The semi-quantitative agreement of the predicted swelling equilibria with experiment is
encouraging. The predicted gel-collapse temperature is approximately three degreeé lower than the
observed collapse temperature. This is not suprisiﬁg, however, considering that the calculated -ritical
temperature for the uncrosslinked system is also too low when using the uncorrected version of our
model. If the exchange energies were correlated to the experimental swelling data, the collapse tem-

perature would be more accurately reproduced.

The calculations predict higher degrees of swelling at low temperatures than those observed
experimentally. This disagfeemem is probably due to the expression we have used to describe the
elastic effects on swelling. Equation (17) assumes that the chains in the gel network are distributed
in a Gaussian manner about their average.chain lengths. While this assumption is reasonable for
short chain extensions, it introduces significant errors at high degrees of swelling. A large body of
information exists on rubber elasticity (Mark and Erman, 1988; Erman and Flory, 1986; Treloar,
1958), and more accurate expressions for the elastic contribution to the Gibbs energy of swelling are
available. We used Equation (17) because its simplicity was consistent with our goal to demonstrate

the applicability of the oriented quasichemical model for describing gel swelling equilibria.

Conclusions

We have used an oriented quasichemical model to correlate phase equilibria for aqueous solu-
tions of hydrophilic polymers and gels. By distinguishing between hydrogen-bonding and dispersion-
force interactions, and without using temperature-dependent parameters, the model can predict the

existence of lower critical solution temperatures that are caused by order-disorder transitions.

We have used the oriented quasichemical model to correlate VLE and LLE for aqueous sys-
tems containing small and large hydrogen-bonding solutes. Satisfactory representation is obtained
for VLE and LLE in systems showing upper and lower critical solution temperatures. To represent

quantitatively LLE near an upper or lower consolute point, we add to the model dePablo’s fluctuation
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correction for the coexistence curve.

Enbouraging results were obtained by applying the model to swelling equilibria for a gel/water
system. Using energy parameters optimized to LLE data for the uncrosslinked poly(N-
isopropylacrylamide)/water system, the model predicts swelling equilibria (and gel collapse) in semi-
quantitative agreement with experiment. Quantitative representation of swelling data will require a

more realistic expression for the elastic contribution to the Gibbs energy.

Finally, it is important to note that all of the exchange energy 'parametcrs obtained from
regressing experimental data have magnitudes and signs consistent with the physical premise of our
model. The model appears to represent correctly the competition between hydrogen-bonding and
dispersion-force interactions which leads to order-disorder transitions and lower critical solution
behavior. These conclusions regarding parameter significance are necessarily qualitative in liéhl of
recent computer simulation studies (Madden et al, 1989). However, the (relatively) favorable com-
parison of quasichemical theory with simulation (Madden et al, 1989) lends support to these conclu-

sions and to the simplifying assumptions made in applying our model to real systems.

Acknowledgments

This work was supported by the Director, Office of Energy Research, Office of Basic Energy Sci-
ences, Chemical Sciences Division of the U.S. Department of Energy under contract No. DE-ACO3-
76SF00098. Monika M. Prange is grateful to the Alexander von Humboldt Stiftung for a Feodor
Lynen Fellows;lip. The authors are grateful to Juan H. Vera and Isaac Sanchez for he—lpful comments

and to W.G. Madden for an opportunity to see the results of his work prior to publication.



List of symbols used

a = constant in de Pablo’s function

A Helmholtz energy

b

constant in de Pablo’s function
E;; = lattice energy

G = Gibbs energy

GE = excess Gibbs energy

k = Boltzmann constant

K = constant in de Pablo’s function

N; = number of molecules of type i

N,-ajp = number of :,sz contacts

m = number of components in a mixture
n; = number of moles of component i

P = pressure

q = surface parameter

Q = partition function

r = size parameter

gas constant

N X
]

temperature

u,-a]'B = interaction energy of f‘}p contact
V = volume
Vv, = molar volume of solvent

V,, = molar volume of monomer unit
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z{ = number of « sites per segment of component i
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z‘p = number of 3 sites per segment of component i

Z = coordination number

Greek letters

T?Jp = nonrandom factor for %# contact

i)
6; = surface fraction of component i
6 = contact-site fraction for & sites on component i

9,‘3 = contact-site fraction for 8 sites on component i

6P = contact-site fraction for D sites on component i
U; = chemical potential of component i

p = crosslink density (fraction of monomer units engaged in a crosslink)

ot fraction of terminated polymer chains

?;

volume fraction of component i

cof"f3 = exchange energy for a ?’f contact

Superscripts

standard state

hydrogen-bond donating site

™
"

hydrogen-bond accepting site

b dispersion-force interaction site
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Appendix I

Calculation of swelling equilibria in solvent/gel systems

In an isothermal and isobaric system containing a crosslinked polymer in equilibrium with pure sol-

vent, swelling equilibria must fu!fill the equilibrium condition

Hy=py , (A-1)

where * and *’ denote the pure solvent phase and the gel phase, respecu'vely; subscript 1 refers to the

solvent.

‘As the gel phase is in equilibrium with pure solvent, we can rewrite the equilibrium condition
By —uf=Au; =0 (A-2)

Here superscript © refers to the standard state which is the pure liquid at system temperature and
pressure.
vFigure A-1 shows solvent chemical-potential isotherms for a gel/solvent system which exhibits a
LCST, plotted versus composition of the gel phase. A distinguishing feature of phase equilibria for
crosslinked polymers (gels) is an unstable region (Ou,/0¢; < 0) at high concentration of solvent in
the gel-phase (high degree of swelling). This instability is caused by contributions of elastic forces
to the chemical potential of the solvent which prevent the polymer from becoming completely solu-
ble.

Figure A-2 shows the coexistence and spinodal curves for the gelfsolvem system. These curves
can be obtained from the isotherms in Figure A-1 by applying stability criteria and equilibrium con-
ditions. The equilibrium composition of the gel phase is found from the solution of Equation (A-2).
At temperatures remote from the transition temperature 7,, Equation (A-2) has pnly one root; only
one gel phase can coexist with the pure solvent. Between T, and T, however, we encounter a region

where two gel phases can coexist with the solvent; T, is the temperature at which the spinodal curve
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shows an extremum on the solvent-rich side (see Figure A-2). Above this temperature only one gel
phase can coexist with the solvent. Coexistence of two gel phases in equilibrium with pure solvent is

only encountered in gels of those linear polymers that show partial miscibility with the solvent.

The binodal curve for the coexistence of the two gel phases can be determined by applying the
Maxwell condition to the chemical potential isucherms; in a solvent/gel system this condition is given

by

gel phase C ”
¢, dAp; =0 (A-3)
gel phase S

Here § and C denote respectively the swollen and the collapsed gel phases.

A general derivation of the Maxwell condition in a binary system is given in Table A-1, augmented
by Figure A-3.

Points along the binodal curve are represented by squares in Figures A-1 and A-2. The trian-
gles indicate points on the spinodal curve which represents the limit of stability. For a given pres-
sure, the phase transition temperature is that temperature for which Equations (A-2) and (A-3) are
satisfied. As the pressure changes, the phase transition can be shifted along the binodal curve until at
some critical pressure, T, and T, coincide and the phase transition becomes continuous (Hirotsu,
1988, Lee et al, 1989). The critical point in a gel is analogous to the critical point of a pure solvent

in the sense that at T, discontinuous phase transitions become continuous.
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Parameters for VLE calculations in aqueous systems

Solute (2) ry q2 % | 28 . o1k | oPP 1k | ©P" Ik
[K] (K] K]
PEG 5000 | 1500 | 1202 | O | 19 | -4733 | 1200 -200.0
PEG 3000 90.0 722 | 0 | 19 | -4733 120.0 -200.0
PEG 300 9.0 74 1 0 | 1.9 | -617.6 120.0 -200.0
PPG 400 12.0 98 | 0 1.4 -306.0 110.3 -75.0

k = Boltzmann constant

*=qaorp
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Table 2 : Parameters for LLE calculations in aqueous systems

Parameters off, of) and " are adjustable binary parameters. Parameters r,, g, 2§, and z§ are determined
from the molecular structure of the solute. Parameters K, a and b are determined from theoretical criteria (sta-

bility criteria and scaling-law exponents) and from the coordinates of the critical point.

Solute (2) ry a2 f | B | 0Bk | PPk | ok K a b

K] (K] K]

Propénal 2.25 2010 1.0 -756.4 197.5 -145.0 | 0.100 -10.0 | 0.36
Phenol 4.0 34 103 |06 -661.0 115.0 -10.0 | 0.092 | -15.0 | 0.36
PPG 400 12.0 98 |0 1.4 | -1033. 260.1 | -120.0 | 0.264 | -20.0 | 0.36
PEG 5000 150.0 1202 | O 1.9 -884.5 | 2203 -103.0 | 0.430 | -15.0 | 0.36

PIPAA 290000 | 3000.0 2400 .1.1 1.1 | -1354. 700.0 -137.2 | 1.00 -10.0 | 0.36

k = Boltzmann constant

*=aorB
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Table A-1:

Derivation of the Maxwell condition for equilibrium between coexisting phases * and *’ for

a pure fluid and for a binary mixture

Pure fluid ’ Binary mixtire

Equilibrium conditions

P =pP" I pi=p, i=1lor2
24 | l | _ 3G
P= oV #i—an

i

From constructing the common tangents in a plot of

A =f(V) 1 G=f(m), i=1o0r2

we obtain new equilibrium conditions (see Figure A-3)

(A+PV)'=(A+PV)” I (G-}«L,‘ni)'=(G-[J"ﬂi)”, i=1o0r2

Forming the total differentials

d(A+PV)y=-SdTl +VdpP ’ d(G = pyny)=~SdT + VdP + nydu, - u,dn,

intergration combined with equilibrium conditions gives

at constant T _ at constant T, P, n,

(A+PV) =(A+PV) = [VdP =0 (G = any) = (G = pamy)" = [mydu; = 0




-30-

Figure Captions
Figure 1: Two-dimensional representation of the oriented lattice model.
Figure 2: VLE for the system water(1)/PEG(2) at 338 K and the system water(1)/PPG(2) at 323 K.

Figure 3: LLE for the systems: a) water(1)/phenol(2), b) water(1)/propenal(2). Solid lines are calcu-

lated from the corrected model; broken lines are calculated from the uncorrected model.

Figure 4: LLE for the systems: a) water(1)/PPG 400(2), b) water(1)/PEG 5000(2), c)
water(1)/PIPAA 290000(2). Solid lines are calculated from the corrected model; broken lines are

calculated from the uncorrected model.

Figure 5: Swelling equilibria for the system water/PIPAA(gel). The solid line is predicted from the
uncorrected model using energy parameters correlated to the uncrosslinked-PIPAA/water system (Fig-

ure 4-c). V, is the gel volume at high temperature.

Figure A-1: Isotherms of the chemical potential of the solvent (Apy = py — pf) in a solvent/gel sys-
tem for a gel showing a LCST. a) 311.35 K, b) 305 K, c) 300.6 K, d) 299.4 K, e) 297.2 K and f).
295 K. The phase transition temperature is 300.6 K [curve c]. The critical temperature is 297.2 K
[curve e]. The squares represent calculated equilibrium compositions of coexisting‘ gel phases. The

triangles represent calculated Iimits of the stable region.

Figure A-2: Phase diagram for a solvent/gel system that shows a LCST. The spinodal curve for the
coexistence of two gel phases is designated by a; b is the coexistence curve for gel with pure sol-
vent; ¢ is the binodal curve for the coexistence of two gel phases. The squares represent calculated
equilibrium compositions of coexisting gel phases. The triangles represent calculated limits of the

stable région.
Figure A-3: Construction of the second step in Table A-1.

a) is a plot of Helmholtz energy versus volume in a pure fluid. The two coexisting phases * and "’

have to fulfill the equilibrium condition P* = P*’ or - [—g—%} = - [g—éJ
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b) is a plot of Gibbs energy versus number of moles of component i in a mixture. The two coexist-

ing phases * and ** have to fulfill the equilibrium condition p; = p,” or [STG] = [STG]
; ;
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Figure 2
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Figure A-1
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Figure A-2
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Figure A-3
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